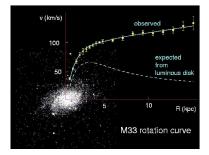
Minimal extension of MSSM for Fermi-LAT/PAMELA CR data (Based on Jihn E. Kim and JH, arXiv:0908.0152)

Ji-Haeng Huh

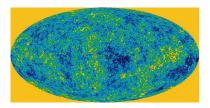
Seoul National University, Korea

2009 LHC Workshop Korea,Konkuk Univ. and KIAS-KAIST-YITP Workshop on DM, LHC and Cosmology

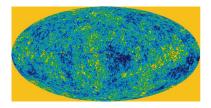
Outline



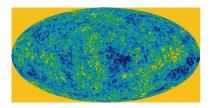
- Rotation curves of galaxies
- Multi-disciplinary study on galaxy clusters (Bullet cluster)
- Cosmic Microwave Background (WMAP)


- Rotation curves of galaxies
- Multi-disciplinary study on galaxy clusters (Bullet cluster)
- Cosmic Microwave Background (WMAP)

- Rotation curves of galaxies
- Multi-disciplinary study on galaxy clusters (Bullet cluster)
- Cosmic Microwave Background (WMAP)



- Rotation curves of galaxies
- Multi-disciplinary study on galaxy clusters (Bullet cluster)
- Cosmic Microwave Background (WMAP)


Nowadays, there is no doubt in existence of Dark Matter(DM).

- Rotation curves of galaxies
- Multi-disciplinary study on galaxy clusters (Bullet cluster)
- Cosmic Microwave Background (WMAP)

But nobody knows non-gravitatinal nature of DM at all.

- Rotation curves of galaxies
- Multi-disciplinary study on galaxy clusters (Bullet cluster)
- Cosmic Microwave Background (WMAP)

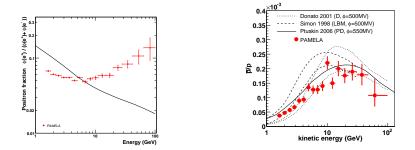
- But nobody knows non-gravitatinal nature of DM at all.
- Recently, however, charged Cosmic-Ray(CR) excesses are reported. It's a candidate of firstly-observed, non-gravitational DM signal.

CR

- Victor Hess(Aug.7, 1912) discovered CR.
- In 1948, it was found that CR contains various nuclei.
- Their relative abundances give us hints about their origin and propagation mechanism.
- Primary source is SNR. Secondary CR are from ISM spallation process.
- CR propagation is governed by diffusion-loss equation(IC, Synchrotron, ..)
 - stable nucle
 - --> diffusion coefficient
 - radioactive nuclei(beta decay or K-capture)
 - --> propagation time scale and injection energy spectrum
- Nowadays, there is numerical model for CR propagation, *Galprop* code(Strong and Moskalenko)

CR experiments

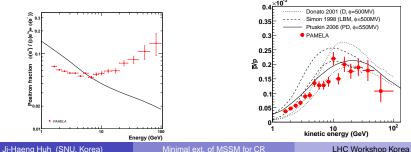
- These days, there are lot of CR experiments.
- AMS, ACE, HESS, Fermi-LAT(a.k.a GLAST), ATIC, BESS, PPB-BETS, CAPRICE, CREAM, HEAT, PAMELA


CR experiments

- These days, there are lot of CR experiments.
- AMS, ACE, HESS, Fermi-LAT(a.k.a GLAST), ATIC, BESS, PPB-BETS, CAPRICE, CREAM, HEAT, PAMELA
- Some of them reported excess of CR. Moreover, recently, two experiments confirms these excesses with better statistics.

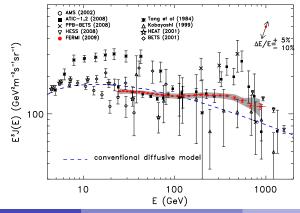
PAMELA

- positron fraction $e^+/(e^+ + e^-)$
- anti-proton/proton ratio \bar{p}/p



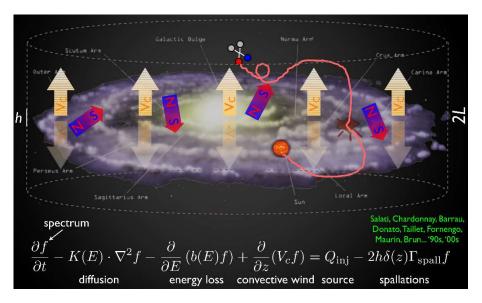
Minimal ext. of MSSM for CR

PAMELA


- positron fraction $e^+/(e^+ + e^-)$ rising from 20 GeV -> primary positron source
- anti-proton/proton ratio \bar{p}/p no observed anti-proton excess -> leptophilic source

Fermi-LAT

• electron(+positron) flux $e^+ + e^-$



Ji-Haeng Huh (SNU, Korea)

DM vs Pulsar

- Primary positrons from nearby pulsar
- Primary positrons from DM (annihilating or decaying)

CR propagation model

Cirelli's talk in SUSY '09

Ji-Haeng Huh (SNU, Korea)

diffusion and propagation

Diffusion-loss equation

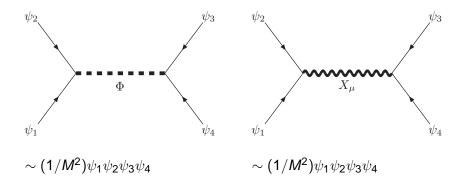
$$\frac{\partial f}{\partial t} - \mathcal{K}(E) \cdot \nabla^2 f - \frac{\partial}{\partial E} (b(E)f) + \frac{\partial}{\partial z} (V_c f) = q$$

- diffusion coefficient K(E) = K₀(E/GeV)^δ (turbulent magnetic fields)
- energy loss coefficient $b(E) = E^2/(\text{GeV}\tau_E)$ with $\tau_E = 10^{16}s$ (synchrotron radation and inverse Compton scattering)
- convecting wind V_c = V_c(z) (To explain observed galatic wind of ext-galaxies and isotope ratio spectrum.)

Decaying dark matter

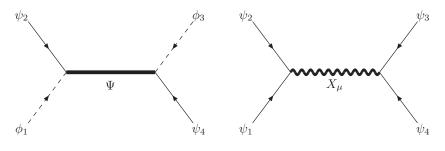
- CR can be from decaying of DM with few TeV mass.
- To make sufficient postiron flux, decay rate should be $\Gamma \sim 10^{-26} s^{-1} \sim (\text{phase factor}) \times m_{\text{DM}}^5 / M_{\text{GUT}}^4$
- Dimension 6 operator with GUT scale suppression. And all dimension-5 operator which allows DM decay must be killed.

Decaying dark matter


- CR can be from decaying of DM with few TeV mass.
- To make sufficient postiron flux, decay rate should be $\Gamma \sim 10^{-26} s^{-1} \sim (\text{phase factor}) \times m_{\text{DM}}^5 / M_{\text{GUT}}^4$
- Dimension 6 operator with GUT scale suppression. And all dimension-5 operator which allows DM decay must be killed.

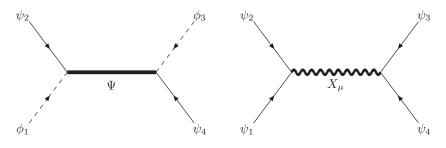
Question?

Grand Unified Theory is something to do with decaying DM? If so, what is the origin of that interaction?


dim-6 in SUSY GUT (1)

 If we assume SUSY, however, it's not the simple task to achive it by integrating super heavy particle with GUT scale mass.

dim-6 in SUSY GUT (1)


 If we assume SUSY, however, it's not the simple task to achive it by integrating super heavy particle with GUT scale mass.

 $\sim (1/M)\phi_1\psi_2\phi_3\psi_4$ dim-5 after supersymmetrizing !! $\sim (1/M^2)\psi_1\psi_2\psi_3\psi_4$

dim-6 in SUSY GUT (1)

 If we assume SUSY, however, it's not the simple task to achive it by integrating super heavy particle with GUT scale mass.

 $\sim (1/M)\phi_1\psi_2\phi_3\psi_4$ dim-5 after supersymmetrizing !! $\sim (1/M^2)\psi_1\psi_2\psi_3\psi_4$ GUT group must be enlarged significantly!!

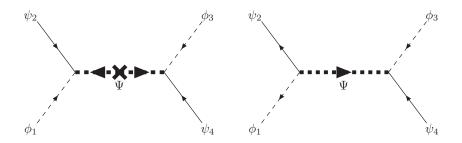
dim-6 in SUSY GUT (2)

- 1. If one consider super heavy scalar exchange diagram to make dimension-6 operator, there's heavy fermion exchange diagram as SUSY counter part. Then there's dimension-5 operator
- 2. If dim-6 operator comes from super heavy vector boson, then we should enlarge the GUT group significantly.

dim-6 in SUSY GUT (2)

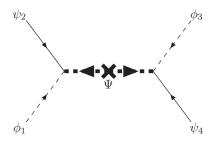
- 1. If one consider super heavy scalar exchange diagram to make dimension-6 operator, there's heavy fermion exchange diagram as SUSY counter part. Then there's dimension-5 operator
- 2. If dim-6 operator comes from super heavy vector boson, then we should enlarge the GUT group significantly.

Is there loop hole?

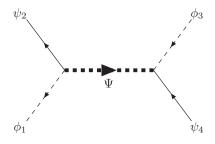

dim-6 in SUSY GUT (2)

- 1. If one consider super heavy scalar exchange diagram to make dimension-6 operator, there's heavy fermion exchange diagram as SUSY counter part. Then there's dimension-5 operator
- 2. If dim-6 operator comes from super heavy vector boson, then we should enlarge the GUT group significantly.

Is there loop hole? Yes!


Toward the minimal extension

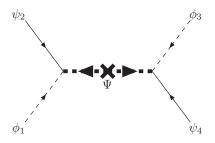
• Consder next two fermion exchange diagram.


Toward the minimal extension

• Consder next two fermion exchange diagram.

 $\sim (1/M)\psi_1\psi_2\psi_3\psi_4$

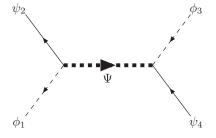
 The first one which has Majorana mass insertion gives dim-5.
 M/(p² - M²)



$$\sim (\partial/M^2) \phi_1 \psi_2 \phi_3 \psi_4$$

The second one gives dim-6 with derivative coupling.
 p ⋅ σ/(p² − M²)

Toward the minimal extension


• Consder next two fermion exchange diagram.

 $\sim (1/M)\psi_1\psi_2\psi_3\psi_4$

• The first one which has Majorana mass insertion gives dim-5. $M/(p^2 - M^2)$

Thanks to Prof.Kyae for pointing it out.

$$\sim (\partial/M^2)\phi_1\psi_2\phi_3\psi_4$$

The second one gives dim-6 with derivative coupling.
 p · σ/(p² - M²)

 Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.

- Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.
 - Absence of Majorana mass
 - leptophilic coupling

- Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.
 - Absence of Majorana mass —> exact U(1) symmetry
 - leptophilic coupling —> SU(3)_C singlet

- Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.
 - Absence of Majorana mass —> exact U(1) symmetry
 - leptophilic coupling —> SU(3)_C singlet
- Charged lepton singlet pair *E*, *E^c* is enough.

- Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.
 - Absence of Majorana mass —> exact U(1) symmetry
 - leptophilic coupling —> SU(3)_C singlet
- Charged lepton singlet pair *E*, *E^c* is enough.
- Is there GUT model in which charged lepton is in GUT singlet?

- Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.
 - Absence of Majorana mass —> exact U(1) symmetry
 - leptophilic coupling —> SU(3)_C singlet
- Charged lepton singlet pair *E*, *E^c* is enough.
- Is there GUT model in which charged lepton is in GUT singlet? Yes. Flipped-SU(5)

- Therefore, we need GUT scale matter without Majorana mass and with leptophilic coupling, necessarily.
 - Absence of Majorana mass —> exact U(1) symmetry
 - leptophilic coupling —> SU(3)_C singlet
- Charged lepton singlet pair *E*, *E^c* is enough.
- Is there GUT model in which charged lepton is in GUT singlet? Yes. Flipped-SU(5)

Barr(1982), Derendinger, J.E.Kim&Nanopoulos(1984)

- $G_{GG}=SU(5)$ $Y=Y_5 \equiv (-1/3, -1/3, -1/3, 1/2, 1/2)$ (MSSM) = $10+\bar{5}+(1)$
- $G_{flip}=U(1)_X \times SU(5)$ Y=(X-Y₅)/5 (MSSM) = 10₁ + $\bar{5}_{-3}$ + 1₋₁

•
$$G_{GG}$$
=SU(5)
Y=Y₅ \equiv (-1/3,-1/3,-1/3,1/2,1/2)
(MSSM) = 10+5+(1)
10 = u^c + q + e^c
5 = d^c + l
1 = ν^{c}

•
$$G_{flip}=U(1)_X \times SU(5)$$

 $Y=(X-Y_5)/5$
(MSSM) = $10_1 + \bar{5}_{-3} + 1_{-1}$
 $10_1 = d^c + q + \nu^c$
 $\bar{5}_{-3} = u^c + l$
 $1_{-1} = e^c$

•
$$G_{GG}$$
=SU(5)
Y=Y₅ \equiv (-1/3,-1/3,-1/3,1/2,1/2)
(MSSM) = 10+ $\bar{5}$ +(1)
10 = u^c + q + e^c
 $\bar{5}$ = d^c + l
1 = ν^c

•
$$G_{flip}=U(1)_X \times SU(5)$$

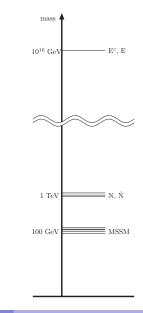
 $Y=(X-Y_5)/5$
(MSSM) = $10_1 + \overline{5}_{-3} + 1_{-1}$
 $10_1 = d^c + q + \nu^c$
 $\overline{5}_{-3} = u^c + l$
 $1_{-1} = e^c$
Free from proton decay and

doublet-triplet splitting!!

•
$$G_{GG}$$
=SU(5)
Y=Y₅ \equiv (-1/3,-1/3,-1/3,1/2,1/2)
(MSSM) = 10+5+(1)
10 = u^c + q + e^c
 $\overline{5} = d^{c} + l$
1 = ν^{c}

•
$$G_{flip}=U(1)_X \times SU(5)$$

 $Y=(X-Y_5)/5$
 $(MSSM) = 10_1 + \bar{5}_{-3} + 1_{-1}$
 $10_1 = d^c + q + \nu^c$
 $\bar{5}_{-3} = u^c + l$
 $1_{-1} = e^c$
Free from proton decay and


doublet-triplet splitting!!

In flipped-SU(5), We are free to add charged lepton singlet pair *E*,
 E^c in GUT scale, because they're appeared as GUT singlet.

Minimal extension

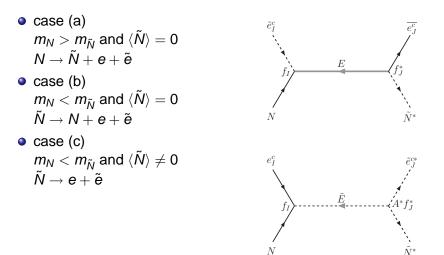
- Keep SUSY 100 GeV to be a solution of gauge hierarchy problem, i.e. LSP mass \sim 100 GeV
- Introduce neutral singlet N with mass TeV order to explain Fermi-LAT
- Introduce E and E^c pair with GUT scale mass and interaction W ~ Ne^cE to make N decay into lepton and slepton by dim-6 operator.

•
$$W \sim Ne^{c}E + m_{\mathrm{TeV}}N^{2} + M_{\mathrm{GUT}}E^{c}E$$

PQ symmetry and singlets

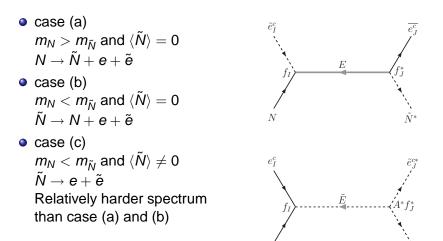
					ℓ_I	e_l^c	ϕ_{u}	ϕ_{d}
R	+	+	_	_	-	_		+
Y	0	0	-1	+1	$-\frac{1}{2}$	+1	$+\frac{1}{2}$	$-\frac{1}{2}$
Г	+1	+2	0	0	-1	1	+2	0

Table: Color singlet chiral fields and their quantum numbers.


 Using Giudice-Masiero mechanism, N gets supersymmetric mass at TeV
 (40 Σ[†] N² = (420 F[†] N² = (420 m = N²)

$$\int d^4 heta \; rac{\Sigma^{ op}}{M_{
hol}} N^2 \sim \int d^2 heta \; rac{F_{\Sigma}^{ op}}{M_{
hol}} N^2 \sim \int d^2 heta \; m_{
m TeV} N^2$$

 PQ-symmetry forbids un-wanted terms and makes accidental parity symmetry which assigns odd only to N, E and E^c.
 N becomes stable.


3 scenario

There are 3 possible scenario which depends on spectrum of N multiplet and whether \tilde{N} developes VEV or not

3 scenario

There are 3 possible scenario which depends on spectrum of N multiplet and whether \tilde{N} developes VEV or not

N

 \tilde{N}^*

PYTHIA and Galprop

PYTHIA

- ► We used PYTHIA to calculate e[±] energy spectrum of slepton subsequent decay.
- We also tested p
 spectrum. In certain MSSM parameters region, p
 production is small enough or even almost anti-proton free. But it
 may depend on detailed spectrum of right-handed sleptons and
 neutralinos.
- Galprop
 - Current public release version(v50) of Galprop has the routine for DM primary source.
 - But it's only for annihilating DM models and only specific form of CR injection spectrum (gaussian type) can be used.
 - Therefore, we partially re-write and add the module for Galprop to be used with decaying dark matter with arbitrary CR injection spectrum.

Results

500 • CAPRICE (2000) ■H.E.S.S. (2009) HEAT (2001)
 AMS (2002) PPB-BETS (2009) • ATIC (2008) • PAMELAe^{\pm} cal.((a) $\gamma_0 = 2.60$) S • Fermi LAT (2009) \circ PAMELA e^{\pm} cal.((a) $\gamma_0 = 2.54$) 'ω 2 $E^3 \times Flux(e^+ + e^-) [GeV^2 m^-]$ 100 0.15• PAMELAe[±] (2008) \cdots (a) $m_N = 6 \text{ TeV}$ $m_{\tilde{N}} = 1 \,\text{TeV}$ 0.10 $f_e = 0, f_\mu = \frac{1}{3}f_\tau$ $\gamma_0 = 2.54$ 6 + \cdots (a) $m_N = 6 \text{ TeV}$ $/(e^+$ $m_{\tilde{N}} = 1 \text{ TeV}$ 0.05 $f_e = 0, f_\mu = \frac{1}{3}f_\tau$ $\gamma_0 = 2.60$ e+ $\cdots (c) m_N = 4 \text{ TeV}$ = 020 50 100 10 10^{2} 10^{3} 10 e^{\pm} energy [GeV]

Conclusion

- We interpret Fermi-LAT/PAMELA CR data in the context of decaying DM scenario.
- We find the model with only one additional chiral field *N* in the low energy.
- It can be easily embedded in flipped-SU(5) model.
- It fits Fermi-LAT/PAMELA well, because subsequent decays make primary e[±] spectrum soft enough.
- Doing so, PQ symmetry is crucially used.
 - Forbids un-wanted term while giving TeV mass to N and allowing Ne^cE coupling
 - Make accidental parity
 - Make model can be embedded in heavy axino decay scenario, so becomes more predictable. (I didn't mention here.)

Thank you !